
0
.5

se
tg

ra
y
0

0
.5

se
tg

ra
y
1

Genetic Algorithms and Genetic
Programming

Pavia University and INFN
Third Lecture: Application to HEP

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

Eric Vaandering – Genetic Programming, # 3 – p. 1/40

Overview
• Machine learning techniques
• Genetic Algorithms
• Genetic Programming

• Review
• Application to a problem in HEP

Eric Vaandering – Genetic Programming, # 3 – p. 2/40

GP Review
Let’s quickly review what we’ve covered the last two times:

Genetic programming transforms, from one generation to the
next, a group of programs (proposed solutions to a problem) into
a “better” group of programs based on biological models and the
concept of fitness.

For our purposes, we’ve been representing these programs as
trees, like this:

−

+

x 1

0

Which corresponds
to the “program”
(x + 1) − 0

Eric Vaandering – Genetic Programming, # 3 – p. 3/40

“Running” the GP
With what we learned last time, we are ready to “run” the GP
(i.e. find a solution). Recall that these are the steps a GP
framework will take:

• User has defined functions and definition of fitness
• Generate a population of programs (few hundred to few

thousand) to be tested
• Test each program against fitness definition
• Choose genetic operation (copy, crossover, or mutation)

and individuals to create next generation
• Chosen randomly according to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we have a large number of solutions; we look at

the best few
Eric Vaandering – Genetic Programming, # 3 – p. 4/40

Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

robust

Eric Vaandering – Genetic Programming, # 3 – p. 5/40

Parallelizing the GP

Eric Vaandering – Genetic Programming, # 3 – p. 6/40

Application to HEP
Ok, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass a AND of a set of
selection criteria.

Instead, what if we give a Genetic Programming framework the
variables we think are interesting, and allow it to construct a
filter for the events?

• If an AND of cuts is the best solution, the GP can find that

We already have some experience with these types of methods.
Neural networks are used effectively for B flavor tagging at LEP,
CLEO, etc.

Eric Vaandering – Genetic Programming, # 3 – p. 7/40

What’s it good for?
• Replace or supplement cuts
• Allow us to include indicators of interesting decays in the

selection process
• These indicators can include variables we can’t cut on

(too low efficiency)
• Can form correlations we might not think of

• Has already had this benefit

Eric Vaandering – Genetic Programming, # 3 – p. 8/40

Questions
When considering an approach like this, some questions
naturally arise:

• How do we know it’s not biased?
• The tree can grow large with useless information.
• Does it do as well as normal cut methods do?
• Is it evolving or randomly finding good combinations?
• What about units? Can you add a momentum and a mass?

• All numbers are defined to be unit-less

Eric Vaandering – Genetic Programming, # 3 – p. 9/40

Cabibbo Suppressed Decays
Doubly Cabibbo suppressed decays can only be observed in
charm. Both W vertices are Cabibbo suppressed.

q

c

q

s

d̄

u

q

c

q

d

s̄

u

Cabibbo Favored Doubly Cabibbo Suppressed

Doubly Cabibbo suppressed decays are chosen for this
application since the final state particles are often identical
(Λ+

c → pK−π+ vs. Λ+
c → pK+π−, D+ → K−π+π+ vs.

D+ → K+π+π−). Eliminates many possible sources of
systematics arising from inexact modeling of what the GP is
doing.

Expected relative branching ratios: ∼ tan4 θc ≈ 0.25%.
Eric Vaandering – Genetic Programming, # 3 – p. 10/40

Target and Vertexing

π

L

Λ

-

c
+

+

π

π

π

γ

Vertex

Secondary
Vertex

Primary Κ

p

Some details of the FOCUS candidate driven vertexing
• L: Distance between production and decay vertices. `/σ`,

significance of separation
• OoT: Significance of decay being out of target material
• CLS, CLP: Confidence levels of decay and production

vertices
• Iso1: CL that tracks from decay vertex are consistent with

production vertex
• Iso2: CL that other tracks (incl. from production vertex) are

consistent with decay vertex
Eric Vaandering – Genetic Programming, # 3 – p. 11/40

Variables and Operators
Give the GP lots of things to try:

Functions (22) Variables (D+–35, Λ+
c –37)

× sign ` ∆W (πp)

/ negate σ` ∆W (Kp)

+ max `/σ` ∆W (πK) σt

− min OoT πcon pT

xy NOT CLS Track χ2’s Σp2
T

√ AND CLP OS Vertex CL merr

log OR Iso1 OS ∆W (πK) µmax

> XOR Iso2 OS CLµ TS/NoTS

< IF #life Real (−2, +2) REME

<=> sin Pri. OoT Int (−10, +10)

f(n) cos p(Λ+
c) 0,1

Example: 80 nodes (40 func., 40 var.) → 4022 × 4037 = 3.3 · 1094

combinations. Just one topology of many (as big as 340).

Eric Vaandering – Genetic Programming, # 3 – p. 12/40

Evaluating the GP
For each program the GP framework suggests, we have to tell the
framework how good the program is:

• All functions must be well defined for all input values, so
> → 1 (true) or 0 (false), log of neg. number, etc.

• Evaluate the tree for each event, which gives a single value
• Select events for which Tree > 0

• Initial sample has as loose cuts as possible
• Return a fitness to framework
• Could be ∝

√
S + B/S (framework wants to minimize)

• In this case S is from CF mode scaled down to
expected/measured DCS level. B is from fit to DCS BG
(masking out signal region if appropriate).

Eric Vaandering – Genetic Programming, # 3 – p. 13/40

An Example Tree
Let’s look at a simple tree. This one will require that the
momentum (p) divided by the time resolution (σt) is greater than
5.

>

/

p σt

5

This filter is then applied to each event in my sample and the
fitness is determined from the selected events.

Eric Vaandering – Genetic Programming, # 3 – p. 14/40

Λ+
c → pK+π−

The first decay we’re looking for is Λ+
c → pK+π−. There are no

observations or limits. Even an observation of tan4 θc relative to
Λ+

c → pK−π+ is challenging, but there is a complication.

The Cabibbo favored mode has an W -exchange contribution
while the DCS decay does not. (This contribution is also why the
Λ+

c lifetime is about one half the Ξ+
c lifetime.)

u

d

c

u

u

q

q

s

So, the expected branching ratio will be reduced, maybe by 50%.

Eric Vaandering – Genetic Programming, # 3 – p. 15/40

Sample Preparation
FOCUS collected about 6 × 109 events in its one year run. This
is way to many events to store, let alone look at with Genetic
Programming (about one million is the most I can handle today).

Throughout the data reconstruction process, the number of
events has been reduced several times. The last time by me. But,
we keep as many events as possible so that the GP has room to
work. (To find out what makes a good Λ+

c → pK−π+ or
Λ+

c → pK+π− decay.) This initial process was done with hard
cuts as explained before.

When I begin this process, the Cabibbo favored decay is clearly
visible, but we have no hope of observing the doubly Cabibbo
suppressed decay without further purification of the data.

Eric Vaandering – Genetic Programming, # 3 – p. 16/40

After skim (pre-GP) signals
 / ndf 2χ 73.7 / 55

Prob 0.04694
p0 322.3± 4.185e+04
p1 142.8± -1.45e+04
p2 350.8± 2.131e+04

p3 0.0001317± 2.289
p4 0.0001527± 0.007753

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

2000

4000

6000

8000

10000

12000

14000

 / ndf 2χ 73.7 / 55
Prob 0.04694
p0 322.3± 4.185e+04
p1 142.8± -1.45e+04
p2 350.8± 2.131e+04

p3 0.0001317± 2.289
p4 0.0001527± 0.007753

Original CF & DCS

Lower histogram is DCS candidates

Eric Vaandering – Genetic Programming, # 3 – p. 17/40

Starting the GP
At this point, I start the GP constructing filters for the data. It
runs on 40 CPUs for 40 generations with 2,000
individual/generation. This means it will look at 3.2 million
possible solutions to our problem.

This may seem like a lot, but remember the possible search space
is � 10100, so in reality it will just sample a very small amount
of the space. I will rely on the evolution of the GP to guide itself
into the right search space.

While I’m ultimately interested in what comes out of the 40th
generation, it helps us understand what’s happening if we look
earlier too.

Eric Vaandering – Genetic Programming, # 3 – p. 18/40

Size (Parsimony) Pressure
An aside: I apply a penalty to the fitness for each node in the
tree. This is to try to keep the tree sizes small. This is not
recommended by the literature:

• How do you know the right penalty?
• Maybe you miss out on some subtree that needs to grow

over time
• Not really shown to help

Never the less, I still do it. Why?
• Reduces execution time
• Worry about training the GP to recognize individual events
• Better chance to understand final trees

The penalty I assess is 0.5% per node. That is, a 101-node tree
has its fitness increased by 50% over single node tree that
performs as well.

Eric Vaandering – Genetic Programming, # 3 – p. 19/40

Best Trees for 4th Generation
Final trees are difficult to understand, early ones are smaller.

AND

>

p σt

×

1 <

f(n)

OSµ

Σp2
T

XOR

0 AND

−

Clp Iso1

<

f(n)

σM

Σp2
T

AND

−

Cls Iso1

<=>

p σt

These are the best three trees; best tree at left
(0 XOR) and (1 ×) are worthless

(f(n) is a neural net sigmoid threshold function)

Eric Vaandering – Genetic Programming, # 3 – p. 20/40

Λ+
c Evolutionary Trajectory

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40
Generation

Fi
tn

es
s

0

20

40

60

80

100
0 5 10 15 20 25 30 35 40

Circles: average, Stars: best, Line: avg. size

Eric Vaandering – Genetic Programming, # 3 – p. 21/40

Expansion of best trees

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 5 10 15 20 25 30 35 40

Stars are the best tree, still evolving at generation 40

Eric Vaandering – Genetic Programming, # 3 – p. 22/40

Λ+
c → pK−π+ (CF) signal

 / ndf 2χ 162.5 / 55
Prob 1.662e-14
p0 22.61± -261.7
p1 10.19± 138.6
p2 60.61± 3034
p3 0.0001614± 2.289
p4 0.0001596± 0.007676

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

100

200

300

400

500

600

700

800

900
 / ndf 2χ 162.5 / 55

Prob 1.662e-14
p0 22.61± -261.7
p1 10.19± 138.6
p2 60.61± 3034
p3 0.0001614± 2.289
p4 0.0001596± 0.007676

Cabibbo Favored

Retains 3,000 of 21,300 original events, lower is DCS

Eric Vaandering – Genetic Programming, # 3 – p. 23/40

Λ+
c → pK+π− (DCS) signal

 / ndf 2χ 73.07 / 57
Prob 0.07432
p0 6.417± -9.228
p1 2.865± 7.375
p2 7.137± 1.093
p3 0± 2.289
p4 0± 0.007676

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

2

4

6

8

10

12

14

 / ndf 2χ 73.07 / 57
Prob 0.07432
p0 6.417± -9.228
p1 2.865± 7.375
p2 7.137± 1.093
p3 0± 2.289
p4 0± 0.007676

DCS

Mass and width are fixed to CF values

Eric Vaandering – Genetic Programming, # 3 – p. 24/40

Best tree (40 generations)
×

+

Σp2
T Cls

IF

>

p σt

+

−

f(n)

OSµ

`

<=>

`/σ` 8.0

min

IF

sin

IF

xy

min

min

Tree2 <=>

Cls χ2
π

Cls

σt

IF

Iso1 <=>

xy

−

Σp2
T Iso1

σt

Iso2

Σp2
T

xy

min

min

×

Σp2
T Clp

−

Σp2
T

πe

−

min

Clp −

Σp2
T

πe

Iso1

σt

Eric Vaandering – Genetic Programming, # 3 – p. 25/40

Comparison with Cut Method
How does this compare with our normal method?

• Looked for DCSD before by maximizing S/
√

B with cut
trees and scans

Λc, standard cuts

0

100

200

300

400

500

600

700

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 1450±50

Λc pK+π-

0

2

4

6

8

10

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 5.2± 4.8

• Important quantity: σYDCS/YCF

• Cuts: Yield = 1450, σY = 4.8

• GP: Yield = 3030, σY = 7.1

• σY/Y for GP = 2.3 × 10−3

• σY/Y for cuts = 3.3 × 10−3

• GP method is ∼ 50% better,
but still need luck or significant
improvements to observe Λ+

c →
pK+π−

Eric Vaandering – Genetic Programming, # 3 – p. 26/40

What about bias?
We put in a penalty (0.5%) for each node to make sure added
nodes are valuable. Then, to evaluate bias, we optimize on only
half the events (at left).

 / ndf 2χ 112.8 / 55
Prob 7.269e-06
p0 15.9± -142
p1 7.175± 74.18
p2 42.93± 1532
p3 0.0002294± 2.289
p4 0.0002292± 0.007771

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

50

100

150

200

250

300

350

400

450
 / ndf 2χ 112.8 / 55

Prob 7.269e-06
p0 15.9± -142
p1 7.175± 74.18
p2 42.93± 1532
p3 0.0002294± 2.289
p4 0.0002292± 0.007771

CF Optimized

 / ndf 2χ 116.1 / 55
Prob 2.929e-06

p0 15.53± -120.9
p1 6.999± 64.46
p2 42.46± 1511
p3 0.0002264± 2.289
p4 0.0002217± 0.007617

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

50

100

150

200

250

300

350

400

450
 / ndf 2χ 116.1 / 55

Prob 2.929e-06

p0 15.53± -120.9
p1 6.999± 64.46
p2 42.46± 1511
p3 0.0002264± 2.289
p4 0.0002217± 0.007617

CF Unoptimized

1532 ± 43 events 1511 ± 42 events

There are slightly more Λ+
c → pK−π+ candidates in the events

used to optimize, but completely consistent with statistics.

Eric Vaandering – Genetic Programming, # 3 – p. 27/40

Bias checks, continued
What about wrong sign, or DCS, distributions? (BG is linear fit
across entire range.)

h9910
Entries 207
Mean 2.263
RMS 0.07946

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

1

2

3

4

5

6

7

8

9

h9910
Entries 207
Mean 2.263
RMS 0.07946

DCS Optimized h9911
Entries 236
Mean 2.252
RMS 0.08664

2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

1

2

3

4

5

6

7

8

h9911
Entries 236
Mean 2.252
RMS 0.08664

DCS Unoptimized

207 events 236 events

236 − 207 = 29 ± 21 events difference between modes. Would
need to cross-check this by optimizing on the other half of
events, changing random numbers, etc. before concluding there
is a problem.

Eric Vaandering – Genetic Programming, # 3 – p. 28/40

Tuning GP parameters
Start: 20 CPUs, 2000 trees/CPU, 6 gen. Doubled each parameter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12
Generation

Fi
tn

es
s

20x2000x6 20x4000x6
40x2000x6 20x2000x12

40x2000x12

• Points: avg & RMS, dots: best
• More generations seems to be best
• Clearly evolution is occurring (not random success)

Eric Vaandering – Genetic Programming, # 3 – p. 29/40

D+ → K+π+π−

While Λ+
c → pK+π− is the analysis we’re pursuing with this

method, D+ → K+π+π− is a useful check.

There is too much data to optimize on all of it, so we choose to
optimize just on 20% of the data.

This branching ratio has been measured and is surprisingly large
(about 3 tan4 θc). The PDG value is 0.75 ± 0.16% relative to
D+ → K−π+π+.

A FOCUS branching ratio measurement and Dalitz analysis is
underway with about 200 events in this mode.

Eric Vaandering – Genetic Programming, # 3 – p. 30/40

Starting point
 / ndf 2χ 107.7 / 35

Prob 9.582e-11
p0 411.5± 3.277e+04
p1 222.1± -1.425e+04
p2 405.9± 6.081e+04
p3 7.065e-05± 1.872
p4 7.332e-05± 0.01032

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Skim criteria (20%) / ndf 2χ 107.7 / 35
Prob 9.582e-11
p0 411.5± 3.277e+04
p1 222.1± -1.425e+04
p2 405.9± 6.081e+04
p3 7.065e-05± 1.872
p4 7.332e-05± 0.01032

Skim criteria (20%) / ndf 2χ 107.7 / 35
Prob 9.582e-11
p0 411.5± 3.277e+04
p1 222.1± -1.425e+04
p2 405.9± 6.081e+04
p3 7.065e-05± 1.872
p4 7.332e-05± 0.01032

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

 / ndf 2χ 107.7 / 35
Prob 9.582e-11
p0 411.5± 3.277e+04
p1 222.1± -1.425e+04
p2 405.9± 6.081e+04
p3 7.065e-05± 1.872
p4 7.332e-05± 0.01032

Skim criteria (20%)

Just the 20% that the GP sees. BG is higher than signal
60, 810 ± 410 events in D + → K−π+π+ signal

Eric Vaandering – Genetic Programming, # 3 – p. 31/40

After 10 generations

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

2000

4000

6000

8000

10000

Selected CF & DCS / ndf 2χ 945.6 / 35
Prob 0
p0 54.18± 1769
p1 28.83± -878.4
p2 226.5± 4.911e+04
p3 4.888e-05± 1.872
p4 4.597e-05± 0.01038

Selected CF & DCS

 / ndf 2χ 56.29 / 37
Prob 0.02196
p0 49.29± 899.8
p1 26.43± -435.4
p2 34.46± 365
p3 0± 1.872
p4 0± 0.01038

1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

120

140

160

 / ndf 2χ 56.29 / 37
Prob 0.02196
p0 49.29± 899.8
p1 26.43± -435.4
p2 34.46± 365
p3 0± 1.872
p4 0± 0.01038

Selected DCS

The full sample: CF on left, DCS on right
365 ± 35 events in D+ → K+π+π− signal

Eric Vaandering – Genetic Programming, # 3 – p. 32/40

Data MC comparisons
Since these decays are nearly identical, what is important is that
the efficiency of the tree for CF and DCS modes is the same.
What need not be known is the absolute efficiency on a single
mode.

For the program which generated this, the MC efficiencies are:

CF Eff. (%) DCS Eff. (%)
Skim cuts 6.99 ± 0.01 6.71 ± 0.01

GP Selection 1.12 ± 0.01 1.11 ± 0.01

GP/Skim 16.03 ± 0.08 16.58 ± 0.09

But, we can look at GP/Skim for the CF data.
We find 16.15 ± 0.08%.

So, not only do the GP efficiencies for MC agree, the one place
we can compare the GP on MC and data, it also comes out right.

Good modeling is important if you need to understand the GP in
detail.

Eric Vaandering – Genetic Programming, # 3 – p. 33/40

Data MC comparisons
Since these decays are nearly identical, what is important is that
the efficiency of the tree for CF and DCS modes is the same.
What need not be known is the absolute efficiency on a single
mode.

For the program which generated this, the MC efficiencies are:

CF Eff. (%) DCS Eff. (%)
Skim cuts 6.99 ± 0.01 6.71 ± 0.01

GP Selection 1.12 ± 0.01 1.11 ± 0.01

GP/Skim 16.03 ± 0.08 16.58 ± 0.09

But, we can look at GP/Skim for the CF data.
We find 16.15 ± 0.08%.

So, not only do the GP efficiencies for MC agree, the one place
we can compare the GP on MC and data, it also comes out right.

Good modeling is important if you need to understand the GP in
detail. Eric Vaandering – Genetic Programming, # 3 – p. 33/40

10th generation result
sin

neg

<=>

/

σt `/σ`

<=>

min

OoT min

cos

ln

#τ

AND

<=>

min

OoT sign

Σp2
T

POT

NOT

IF

f(n)

XOR

OSµ πcon

AND

xy

Iso2 OoT

<

KChi σt

<

cos

Iso1

>

∆πK 1 0

Eric Vaandering – Genetic Programming, # 3 – p. 34/40

Conclusions
This method shows promise, but there are some caveats

• More challenging for modeling
• Perhaps best used where statistical errors dominate
• Trees are very complex and any attempt to understand the

whole thing may be pointless

However
• Worthwhile to try to understand parts of trees
• Combination CLP - Iso1 occurred often

• Now being used in other analyses
• Even simpler trees do better than the cuts they suggest

We think this novel method at least deserves further exploration

Eric Vaandering – Genetic Programming, # 3 – p. 35/40

SW Mechanics & Conclusions
Is interfacing to an existing experiment’s code difficult?

• Genetic programming framework
• C language based lilgp from MSU Garage group
• Modified for parallel use (PVM) by Vanderbilt Med

Center group
• Parallel version allows sub-population exchange

• Physics variables start with standard FOCUS analysis
• Write HBOOK ntuples, convert to Root Trees
• Write a little C++ code to access Trees, fill and fit

histograms (using MINUIT) and return the fit
information to the lilgp framework

• This is actually pretty easy

Eric Vaandering – Genetic Programming, # 3 – p. 36/40

Homework
Ok, now for the not-so-fun part. I’m supposed to give you a
homework assignment. We’ll make it easy:

• On the “Resources” slide are several web pages with
software

• Look around and pick a software package in your favorite
language
• C++, C, Java
• Perl, Ruby, Python
• FORTRAN?!?!, LISP, others

• Most or all of these will have example problems and code
• Pick one you like, change the evolutionary parameters and

try changing the problem too

The idea is just to get your feet wet a little.

I also want to hear your impressions, because I’ve only used one
of these frameworks (lilgp).

Eric Vaandering – Genetic Programming, # 3 – p. 37/40

GA & GP Resources
There is a lot of information on the web about Genetic
Algorithms and Programming:

• http://www.aic.nrl.navy.mil/galist/ —
Genetic Algorithms

• http://www.genetic-programming.org/ —
John Koza

Software frameworks for both GA and GP exist in almost every
language (most have several)

• http://www.genetic-programming.com/
coursemainpage.html#_Sources_of_Software

• http://zhar.net/gnu-linux/howto/ – GNU AI
HowTo (GA/GP/Neural nets, etc.)

• http://www.grammatical-evolution.org —
GA–GP Translator

Eric Vaandering – Genetic Programming, # 3 – p. 38/40

Backup slides

Backup slides

Eric Vaandering – Genetic Programming, # 3 – p. 39/40

f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

Eric Vaandering – Genetic Programming, # 3 – p. 40/40

	Overview
	GP Review
	``Running'' the GP
	Parallelizing the GP
	Parallelizing the GP
	Application to HEP
	What's it good for?
	Questions
	Cabibbo Suppressed Decays
	Target and Vertexing
	Variables and Operators
	Evaluating the GP
	An Example Tree
	pkpidcsd
	Sample Preparation
	After skim (pre-GP)
signals
	Starting the GP
	Size (Parsimony)
Pressure
	Best Trees for 4th Generation
	lc Evolutionary Trajectory
	Expansion of best trees
	pkpi (CF)
signal
	pkpidcsd (DCS)
signal
	Best tree (40 generations)
	Comparison with Cut Method
	What about bias?
	Bias checks, continued
	Tuning GP parameters
	kpipidcsd
	Starting point
	After 10 generations
	Data MC comparisons
	Data MC comparisons

	10th generation result
	Conclusions
	SW Mechanics & Conclusions
	Homework
	GA & GP Resources
	Backup slides
	$f(n)$
function

